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1 Introduction

Today’s topics:

• Max-Cut Problem

• Crash course on Mathematical Programming (MP)

• Best possible known approximation

2 Max-Cut Problem

Definition 1. Given a Graph G on n nodes, the max-cut problem is to find a partition S ∪ S̄ which

maximizes the cut (S, S̄) = # of edges from S to S̄.

Solving this problem exactly is NP − hard. We would like to find an approximate algorithm that

does well.

Goal 1. Find (S, S̄) such that:

cut(S, S̄) ≥ αcut(S∗, S̄∗) (1)

Here ∗ denotes the optimal configuration. We would like α to be as large as possible and we would like to

find the approximate cut in polynomial time.

Claim 2. We can achieve α = 1
2 .

Proof. Choose S to be a random subset of V , the set of vertices in G. Below I use the notation i&j to

denote that vertices i and j are separated.

Analysis:

EScut(S, S̄) = ES [
∑

(i,j)∈E

χ[i&j]] =
∑

(i,j)∈E

1

2
=
m

2
(2)

Since cut(S∗, S̄∗) ≤ m, we can conclude that α = 1
2 is achievable.

By repeating the procedure above many times, we can get the approximation α = 1
2 with high

probability (say ≥ 90%).
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3 Crash course on MP

If we have x1, ..., xn ∈ R, a sample MP problem would be to find max f(x) such that x ∈ P , where P is

some set of constraints.

In our problem, we can consider:

xi =

{
1 if i ∈ S
−1 if i /∈ S

So, our max-cut problem boils down to finding:

max
∑

(i,j)∈E

1− xixj
2

The general LP problem above is NP-hard. MP can be solved in two broad cases:

• Linear Programs

• Convex Programs

Our technique will be to “relax” our MP into more tractable MP(such as LP/CP). Essentially, we will

find the solution to an MP’ problem instead of our current MP problem and then “massage” the solution

to yield an approximate solution for our original problem. We will “relax” and then “round”.

3.1 Relaxation

Relaxation gives us semidefinite programming (SP). The condition xi ∈ {1,−1} is reinterpreted as x2i = 1

and now instead of considering xi as a binary variable, we can think of it as a vector such that ||xi|| = 1.

Hence, we expand our class of solutions. The Max-Cut SDP is now:

max
∑

(i,j)∈E

(1− xi · xj)/2

where

||xi|| = 1

Note that we now consider the dot products xi · xj instead of simple products. This SDP problem can

now be solved in poly(description complexity * log(1/ε)) using the interior point method, for example

and so it is polytime as opposed to exponential time.

The general SDP problem looks like:

max
∑
i,j

wijGij such that
∑
i,j

AkijGij ≥ bk

where

G = vT v

for some matrix v. G is known as the Gram matrix.

Theorem 3. The following are equivalent:

2



• ∃v such that G = vT v

• ∀x ∈ Rn, xTGx ≥ 0

• All eigenvalues of G are ≥ 0, or G is positive semi-definite.

Proof. The Proof that (1) =⇒ (2): xTGx = xT vT vx = ||vx||22 ≥ 0, as required.

We also have the claim that ∀G satisfying (2), they form a convex subset in Rn2
, although we won’t

prove it here.

So far, we have φ = max obtained by MC,SDP . x1, ..., xn are vectors and G = vT v. Our claim is that

φ is a relaxation of the original max-cut. We then have

φ ≥ cut(S∗, S̄∗)

We would like xi ·xj ∼ 1 if xi and xj are roughly in the same direction. If they are in opposite directions,

we would like xi · xj ∼ −1. The algorithm we use makes use of a random hyperplane algorithm first

suggested by Goemans and Williamson (1994). We choose the random hyperplane from a gaussian

distribution g.

We have:

Eg[cut(S, S̄)] = Eg[
∑
(i,j)

wijχ(Si 6= Sj)] =
∑
(i,j)

wijPr[i&j]

Now note that Pr[i&j] =
angle between xi and xj

π . So, we have

Eg[cut(S, S̄)] =
∑
(i,j)

wij
arccos(xi · xj)

π
≥ αφ ≥ αcut(S∗, S̄∗)

If we find the point where
arccos(xi·xj)

π is farthest from the line joining points (−1, 1) and (1, 0), then we

see that at the worst point, we have:

αGW = min
arccos(r/π)

(1− r)/2
= 0.878

In conclusion, we can always find S using our random hyperplane method such that:

EScut(S, S̄) ≥ αGW cut(S∗, S̄∗)

By repeating the procedure above many times, we can guarantee with high probability an αGW ap-

proximation to the optimal max-cut. Under the unique games conjecture proposed by Subhash Khot,

αGW = 0.878 turns out to be the best possible approximation factor.

Next time: We will talk about the 3-coloring problem.
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